
Chapter 3

Bohr model of hydrogen

Figure 3.1: Democritus

The atomic theory of matter has a long history, in some ways all the
way back to the ancient Greeks (Democritus - ca. 400 BCE - suggested that
all things are composed of indivisible “atoms”). From what we can observe,
atoms have certain properties and behaviors, which can be summarized as
follows: Atoms are small, with diameters on the order of 0.1 nm. Atoms
are stable, they do not spontaneously break apart into smaller pieces or
collapse. Atoms contain negatively charged electrons, but are electrically
neutral. Atoms emit and absorb electromagnetic radiation. Any successful
model of atoms must be capable of describing these observed properties.
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(a) Isaac Newton (b) Joseph von Fraunhofer (c) Gustav Robert Kirch-
hoff

3.1 Atomic spectra

Even though the spectral nature of light is present in a rainbow, it was not
until 1666 that Isaac Newton showed that white light from the sun is com-
posed of a continuum of colors (frequencies). Newton introduced the term
“spectrum” to describe this phenomenon. His method to measure the spec-
trum of light consisted of a small aperture to define a point source of light,
a lens to collimate this into a beam of light, a glass spectrum to disperse
the colors and a screen on which to observe the resulting spectrum. This
is indeed quite close to a modern spectrometer! Newton’s analysis was the
beginning of the science of spectroscopy (the study of the frequency distri-
bution of light from different sources).

The first observation of the discrete nature of emission and absorption
from atomic systems was made by Joseph Fraunhofer in 1814. He noted
that when sufficiently dispersed, the spectrum of the sun was not continu-
ous, but was actually missing certain colors as depicted in Fig. 3.2. These
appeared as dark lines in the otherwise continuous spectrum, now known
as Fraunhofer lines. (These lines were observed earlier (1802) by William
H. Wollaston, who did not attach any significance to them.) These were
the first spectral lines to be observed. Fraunhofer made use of them to de-
termine standards for comparing the dispersion of different types of glass.
Fraunhofer also developed the diffraction grating to enable not only greater
angular dispersion of light, but also standardized measures of wavelength.
The latter could not be achieved using glass prisms since the dispersion
depended on the type of glass used, which was difficult to make uniform.
With this, he was able to directly measure the wavelengths of spectral lines.
Fraunhofer’s achievements are all the more impressive, considering that he
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died at the early age of 39.

Figure 3.2: Fraunhofer spectrum of the sun. Note the dark lines in the solar
spectrum.

The origin of the solar spectral lines were not understood at the time
though. It was not until 1859, when Gustav Kirchoff and Robert Bunsen,
realized that the solar spectral lines were due to absorption of light by par-
ticular atomic species in the solar atmosphere. They noted that several
Fraunhofer lines coincided with the characteristic emission lines observed in
the spectra of heated elements. By realizing that each atom and molecule
has its own characteristic spectrum, Kirchoff and Bunsen established spec-
troscopy as a tool for probing atomic and molecular structure.

There are two ways in which one can observe spectral lines from an
atomic species. The first is to excite the atoms and examine the light that
is emitted. Such emission spectra consist of many bright “lines” in a spec-
trometer, as depicted in Fig. 3.3. The second approach is to pass white
light with a continuous spectrum through a glass cell containing the atomic
species (in gas form) that we wish to interrogate and observe the absorbed
radiation. This absorption spectrum will contain dark spectral lines where
the light has been absorbed by the atoms in our cell, illustrated in Fig. 3.3.
Note that the number of spectral lines observed by absorption is less than
those found through emission.

The road to understanding the origins of atomic spectral lines began
with a Swiss schoolmaster by the name of Johann Balmer in 1885, who was
trying to understand the spectral lines observed in emission from hydrogen.
He noticed that there were regularities in the wavelengths of the emitted
lines and found that he could determine the wavelengths with the following
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Figure 3.3: Spectra from various experimental setups demonstrating emis-
sion and absorption spectra. Spectrum from a white light source (top).
Emission spectrum from a hot atomic gas vapor (could also be electrically
excited). Absorption spectrum observed when white light is passed through
a cold atomic gas.

formula

λ = λ0

(
1
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, (3.1)

where n is an integer greater than two, and λ0 is a constant length of 364.56
nm. This empirical result was generalized by Johannes Rydberg in 1900 to
describe all of the observed lines in hydrogen by the following formula
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(
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)−1( 1
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− 1

n2

)−1

, (3.2)

where m and n are integers (m < n), R is known as the Rydberg constant
(R = 13.6 eV), h is Planck’s constant (6.626× 10−34 Js) and c is the speed
of light in vacuum. Although a concise formula for predicting the emission
wavelengths for hydrogen were known, there was no physical description for
the origin of these discrete lines. The leading theory of the day was that
atoms and molecules had certain resonance frequencies at which they would
emit, but there was no satisfactory description of the physical origins of these
resonances. Furthermore, there were no other closed formulae to predict the
emission spectral lines of other, more complex, materials. To take the next
steps in understanding these questions required a model of the atom from
which the radiation is emitted or absorbed.
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3.2 Thomson’s plumb-pudding model

(a) Joseph John Thomson (b) Cartoon of the plum-pudding
model of the atom put forth by
Thomson.

Modern atomic theory has its roots at the end of the 19th century. Atoms
were thought to be the smallest division of matter until J. J. Thomson dis-
covered the electron in 1897, which occurred while studying so-called cath-
ode rays in vacuum tubes. He discovered that the rays could be deflected by
an electric field, and concluded that these rays rather than being composed
of light, must be composed of low-mass negatively charged particles he called
corpuscles, which would become known as electrons. Thomson posited that
corpuscles emerged from within atoms, which were composed of these cor-
puscles surrounded by a sea of positive charge to ensure that the atoms were
electrically neutral. Thomson’s model became known as the plum-pudding
model, since the electrons (corpuscles) were embedded in a continuum of
positive charge like plums in a plum pudding. Thomson and his students
spent a significant amount of effort in attempting to use this model of an
atom to calculate the emission and absorption expected from such a charge
distribution. However, this model had several holes in it (no pun intended),
that could not accurately describe observed emission or absorption spectra,
and more significantly, scattering of charged particles from atoms.

3.3 Rutherford’s planetary model

In 1909, Hans Geiger and Ernest Marsden carried out a series of experiments
to probe the structure of atoms under the direction of Ernest Rutherford
at the University of Manchester. The experiment, often called the gold-foil
experiment, sent a beam of positively charged particles, called α particles
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(a) Ernest Rutherford (b) Pictoral representation of the
Rutherford (or planetary) model of
an atom, in which the positively
charged nucleus, which contains the
majority of the atomic mass, is sur-
rounded by orbiting electrons.

(now known to be ionized helium atoms) onto a thin gold foil sheet, as
sketched in Fig. 3.4. If Thomson’s plum-pudding model were correct, the
α particles should have passed through the foil with only minor deflection.
This is because the α particles have a significant mass, and the charge in
the plum-pudding model of the atom is spread widely throughout the atom.
However, the results were quite surprising. Many of the α particles did pass
through with little change to their path. However they observed that a small
fraction of particles were deflected through angles much larger than 90◦.

Rutherford analyzed the scattering data and developed a model based
on a the positive charge of the atom, localized in a small volume, containing
the majority of the atomic mass. This is summarized in his words

It was quite the most incredible event that has ever happened
to me in my life. It was almost as incredible as if you fired a 15-
inch shell at a piece of tissue paper and it came back and hit you.
On consideration, I realized that this scattering backward must
be the result of a single collision, and when I made calculations
I saw that it was impossible to get anything of that order of
magnitude unless you took a system in which the greater part of
the mass of the atom was concentrated in a minute nucleus. It
was then that I had the idea of an atom with a minute massive
center, carrying a charge.
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Figure 3.4: Depiction of the gold-foil experiment in which α particles are
scattered from a thin gold film and observed on a fluorescent screen.

- Ernest Rutherford

In 1911, Rutherford proposed that the positive charge of an atom was
concentrated in a small central volume, which also contained the bulk of
the atomic mass. This “nucleus” is surrounded by the negatively charged
electrons as illustrated in Fig. 3.4b. Thus the Rutherford, or planetary,
model of the atom came into being.

Classical discussion of nuclear atom The classical description of the
nuclear atom is based upon the Coulomb attraction between the positively
charged nucleus and the negative electrons orbiting the nucleus. To simplify
the discussion, we focus on the hydrogen atom, with a single proton and
electron. Furthermore, we consider only circular orbits. The electron, with
mass me and charge −e moves in a circular orbit of radius r with constant
tangential velocity v. The attractive Coulomb force provides the centripetal
acceleration v2/r to maintain orbital motion. (Note we neglect the motion
of the nucleus since its mass is much greater than the electron.) The total
force on the electron is thus

F =
1

4πε0

e2

r2
=
mev

2

r
, (3.3)

where ε0 = 8.854 × 10−12 F/m is the permittivity of free space. Note that
this is positive since we are taking the force to be acting in the −r̂ direction,
where r̂ is the unit vector pointing from the nucleus to the electron position
(this cancels out the - sign from the electron charge). From this equation,
we can determine the kinetic energy of the electron (neglecting relativistic
effects)

K =
1

2
mev

2 =
1

8πε0

e2

r
. (3.4)
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The potential energy of the electron is just given by the Coulomb potential

U = − 1

4πε0

e2

r
. (3.5)

Here the potential energy is negative due to the sign of the electron charge.
The total energy E = K + U is thus

E = − 1

8πε0

e2

r
. (3.6)

Up to this point we have neglected a significant aspect of classical physics.
A major challenge for the classical treatment of the planetary model of the
atom stems from the fact that the atomic nucleus and orbiting electrons
carry net charges, whereas the Sun and planets of the solar system are elec-
trically neutral. It is well known that oscillating charges will emit electro-
magnetic radiation, and thus carry away mechanical energy. Then according
to the classical theory of the atom the electron will spiral into the nucleus in
only a matter of microseconds, all the while continually emitting radiation.
Furthermore, as the electron spirals in towards the nucleus the frequency of
emitted radiation increases continuously, owing to the increased frequency
of oscillation. Clearly these are not observed - atoms are stable, do not con-
tinually emit radiation, and do not emit a continuous spectrum of radiation.
Although this model, based upon classical physics in which the electrons
were held to the nucleus through the Coulomb force, could not satisfactorily
describe the observed atomic spectra, the concept of a nuclear atom would
play a central role in developing a theory that would do so.

3.4 Bohr’s model

In 1911, fresh from completion of his PhD, the young Danish physicist Niels
Bohr left Denmark on a foreign scholarship headed for the Cavendish Labo-
ratory in Cambridge to work under J. J. Thomson on the structure of atomic
systems. At the time, Bohr began to put forth the idea that since light could
no long be treated as continuously propagating waves, but instead as dis-
crete energy packets (as articulated by Planck and Einstein), why should
the classical Newtonian mechanics on which Thomson’s model was based
hold true? It seemed to Bohr that the atomic model should be modified
in a similar way. If electromagnetic energy is quantized, i.e. restricted to
take on only integer values of hν, where ν is the frequency of light, then it
seemed reasonable that the mechanical energy associated with the energy
of atomic electrons is also quantized. However, Bohr’s still somewhat vague
ideas were not well received by Thomson, and Bohr decided to move from
Cambridge after his first year to a place where his concepts about quanti-
zation of electronic motion in atoms would meet less opposition. He chose
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Figure 3.5: Niels Henrik David Bohr

the University of Manchester, where the chair of physics was held by Ernest
Rutherford. While in Manchester, Bohr learned about the nuclear model of
the atom proposed by Rutherford.

To overcome the difficulty associated with the classical collapse of the
electron into the nucleus, Bohr proposed that the orbiting electron could
only exist in certain special states of motion - called stationary states, in
which no electromagnetic radiation was emitted. In these states, the angular
momentum of the electron L takes on integer values of Planck’s constant
divided by 2π, denoted by ~ = h/2π (pronounced h-bar). In these stationary
states, the electron angular momentum can take on values ~, 2~, 3~, ...,
but never non-integer values. This is known as quantization of angular
momentum, and was one of Bohr’s key hypotheses. Note that this
differs from Planck’s hypothesis of energy quantization, but as we will see
it does lead to quantization of energy.

For circular orbits, the position vector of the electron r is always perpen-
dicular to its linear momentum p. The angular momentum L = r × p has
magnitude L = rp = mevr in this case. Thus Bohr’s postulate of quantized
angular momentum is equivalent to

mevr = n~, (3.7)

where n is a positive integer. This can be solved to give the velocity

v =
n~
mer

. (3.8)
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Using this result in Eq. (3.3),

mev
2

r
=
me

r

(
n~
mer

)2

=
1

4πε0

e2

r2
, (3.9)

we find a series of allowed radii

rn =
4πε0~2

mee2
n2 = a0n

2. (3.10)

Here a0 = 0.0529 nm is known as the Bohr radius. Equation (3.10) gives
the allowed radii for electrons in circular orbits of the hydrogen atom.

This is a significant and unexpected result when compared to the classical
behavior discussed previously. A satellite in a circular orbit about the earth
can be placed at any altitude (radius) by providing an appropriate tangential
velocity. However, electrons are only allowed to occupy orbits with certain
discrete radii. Furthermore, this places constraints to the allowed velocity,
momentum, and total energy of the electron in the atom. By using Eq.
(3.10) we can find the allowed velocity, momentum, and total energy in
hydrogen are given by

vn =
~

mea0n
, (3.11)

for the quantized velocity,

pn =
~
a0n

, (3.12)

for the quantized momentum (note we assume nonrelativistic momentum),
and

En = − mee
4

32π2ε20~2

1

n2
= − e2

8πε0a0

1

n2
= −E1

n2
, (3.13)

for the quantized energy levels. Here E1 = 13.6 eV is the ground state
energy of the system.

The energy levels are indicated schematically in Fig. 3.6. The elec-
tron energy is quantized, with only certain discrete values allowed. In
the lowest energy level, known as the ground state, the electron has en-
ergy E1 = 13.6 eV. The higher states, n = 2, 3, 4, ... with energies
−3.6 eV,−1.5 eV,−0.85 eV, ... are called excited states. The integer, n
that labels both the allowed radius and energy level, is known as the princi-
ple quantum number of the atom. It tells us what energy level the electron
occupies.

When the electron and nucleus are separated by an infinite distance
(n → ∞) we have E = 0. By bringing the electron in from infinity to a
particular state n, we release energy E = −(Efinal − Einitial) = |En| (note
the minus sign comes from the energy being released). Similarly, if we start
with an atom in state n, we must supply at least |En| to free the electron.
This energy is known as the binding energy of the state n. If we supply more
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Figure 3.6: Schematic representation of the discrete allowed energy levels in
the hydrogen atom.

energy than |En| to the electron, then the excess beyond the binding energy
will appear as kinetic energy of the freed electron.

The excitation energy of an excited state n is the energy above the ground
state, En − E1. For the first excited state, n = 2, the excitation energy is

∆E = E2 − E1 = −3.4 eV − (−13.6 eV) = 10.2 eV. (3.14)

Once Bohr had worked out that the energy levels of hydrogen were quan-
tized, i.e. only allowed to take on discrete values, he was able to easily de-
scribe the spectral lines observed for hydrogen if he were to posit a second
postulate: radiation can only be emitted when the atom makes a transition
from one energy level, say n, to another with lower energy, m < n. The
energy of the emitted photon will thus be given by the difference in energy
between these two levels
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Eph = Em − En = E1

(
1

m2
− 1

m2

)
. (3.15)

Using Planck’s relation between energy and frequency, E = hν, we can see
that the expected frequency spectral lines are

ν =
E1

h

(
1

m2
− 1

m2

)
, (3.16)

or in terms of wavelength

λ =
hc

E1

(
1

m2
− 1

m2

)−1

. (3.17)

Comparison of this with Rydberg’s empirical formula, Eq. (1.2), Bohr iden-
tified his ground state energy value, E1 = 13.6 eV with the experimentally
determined Rydberg constant, R = 13.6 eV. These two agreed well within
experimental errors of the time.

Note that Bohr’s second postulate, i.e. the energy of an emitted photon
from an atom is given by the difference in energy level, contradicts the con-
cepts of classical physics in which an oscillating charge emits radiation at
its frequency of oscillation. For an electron in state n with energy En, its
oscillation frequency is just νn = En/h. Taken together, Bohr’s postulates
can be summarized as follows

Bohr’s postulates

• Quantized angular momentum: L = mevr = n~.

• Radiation is only emitted when an atom makes transitions between
stationary states: Eph = Em − En.

By examining Eq. (3.12), we see that this can be rewritten as

h

pn
= 2πa0n =

2πrn
n

. (3.18)

As we will see when we discuss the wave nature of matter and the de Broglie
wavelength, the quantization of angular momentum, which leads to allowed
orbits with radii rn = a0n

2 and momenta pn = ~/a0n = ~n/rn implies
that the circumference of the allowed states is an integer multiple of the de
Broglie wavelength λdB = h/p

nλdB = 2πrn (3.19)

which follows easily from Eq. (3.18) above.
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Hydrogen-like ions

The treatment of hydrogen atoms prescribed by Bohr can be generalized
to describe the energy level structure and electromagnetic radiation spectra
of hydrogen-like ions, i.e. a positive nucleus with charge Ze (Z the integer
number of protons in the nucleus) orbited by a single electron. The nuclear
charge comes into the Bohr model in only one place - the Coulomb force
acting on the electron, Eq. (3.3), which becomes

F =
1

4πε0

Ze2

r2
=
mev

2

r
. (3.20)

The method applied by Bohr is the same as before, but with e2 replaced by
Ze2. This results in a new expression for the allowed radii

rn =
4πε0~2

meZe2
n2 =

a0n
2

Z
, (3.21)

and allowed energy levels

En = −me(Ze
2)2

32π2ε20~2

1

n2
= − Z2e2

8πε0a0

1

n2
= −E1

Z2

n2
. (3.22)

The orbits with high-Z atoms are closer to the nucleus and have larger
(more negative) energies, i.e. they are more tightly bound to the nucleus.
The frequencies of emitted radiation from such an ion will also be modified,
and from Eq. (3.22) we see this should scale with Z2

ν =
E1Z

2

h

(
1

m2
− 1

m2

)
, (3.23)

or in terms of wavelength

λ =
hc

E1Z2

(
1

m2
− 1

m2

)−1

. (3.24)

Absorption spectra

The Bohr model not only helps us to understand the emission spectrum of
atoms, but also explain why atoms do not absorb at all the same wavelengths
that it emits. Isolated atoms are normally found in the ground state - excited
states live for very short time periods (≈ 1 ns) before decaying to the ground
state. The absorption spectrum therefore contains only transitions from the
ground state (n = 1). To observe transitions from the first excited state
(n = 2) would require a significant number of atoms to occupy this state
initially. Assuming that the atoms are excited by their thermal energies,
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this implies that to excite an atom to the first excited state from the ground
state requires temperature that satisfies

kBT = E2 − E1 = 10.2 eV,

which gives a temperature

T =
(10.2 eV)(1.6× 10−19 J/eV)

1.38× 10−23 J/K
≈ 1.2× 105 K,

which is much larger than room temperature (the surface of the sun has
temperature T ≈ 6× 103 K).

3.5 Franck-Hertz experiment

(a) James Franck (b) Gustav Ludwig Hertz

Less than a year after Bohr published his first papers describing his the-
ory of the structure of hydrogen and its corresponding spectrum, further ev-
idence for the Bohr model was provided by German physicists James Franck
and Gustav Ludwig Hertz (nephew of Heinrich Rudolf Hertz of electromag-
netic waves and photoelectric effect fame). They set out to experimentally
probe the energy level structure of atoms by colliding an atomic vapor with
a stream of electrons. The experiment (for which they were awarded the
Nobel Prize in 1925) that they performed, now known as the Franck-Hertz
experiment, is depicted in Fig. 3.7 below. A filament (F) heats a cathode
(C) from which electrons are emitted. The electrons are accelerated towards
a metal grid (G) by a variable potential difference V . Some of the electrons
can pass through the mesh in the grid and reach the collection plate (P)
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if the accelerating potential V exceeds a small retarding potential V0. The
current between the cathode and collection plate i is measured by an amme-
ter (A). The filament, cathode, grid, and collection plate are enclosed in an
vacuum tube to ensure that the electrons do not collide with any molecules
in the atmosphere.

Figure 3.7: Franck-Hertz experimental setup. Electrons freed from the cath-
ode (C) by heating from a filament (F) are accelerated by voltage V toward
a grid (G). For V > V0, the electrons are collected on a plate (P) and regis-
tered using an ammeter (A). Collisions with atoms can be either elastic or
inelastic.

To probe an atomic species, Franck and Hertz introduced a low-pressure
atomic gas (they used mercury) into the tube. As the accelerating voltage is
increased from zero more and more electrons reach the collection plate and
a steadily increasing current is observed, as shown in Fig. 3.8. The electrons
can make collisions with the atoms in the tube, but they will lose no energy
since the collisions are perfectly elastic - only their direction of propagation
can change. If this were the only possible way for the electrons and atoms to
interact, then one would expect a continuously increasing current. However,
this is not what was observed as shown in Fig. 3.8. When the accelerating
voltage reaches approximately integer values of 4.9 V, a sharp drop in the
measured current is observed, implying that a significant number of electrons
have lost much of their kinetic energy.

To interpret their results, Franck and Hertz suggested that the only way
an electron can lose energy in a collision is if the electron has sufficient
energy to cause the atom to make a transition to an excited state. Thus,
when the energy of electrons just reaches the transition energy between
the ground and first excited state (assuming all atoms start in the ground
state) ∆E = E1 − E2 (for hydrogen this is 10.2 eV, while for mercury
it is 4.9 eV), the electrons can make an inelastic collision with the atom,
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Figure 3.8: Franck-Hertz experimental results with mercury vapor. As the
accelerating voltage is increased, the measured current passing through the
gas increases until the transition energy between the ground state and first
excited state 4.9 eV, is reached. Electrons will undergo inelastic collisions
at this energy, giving up their kinetic energy to excited the mercury atom
and thus have insufficient energy to reach the collection plate. At higher
acceleration voltages, the electrons can undergo multiple collisions, each
time giving up energy 4.9 eV.

leaving ∆E energy with the atom, which is now in the n = 2 excited state,
and the original electron is scattered with very little energy remaining. As
the accelerating voltage is increased, we begin to see the effects of multiple
collisions. That is, when V = 9.8 V the electrons have sufficient energy to
collide with two different atoms, losing energy of 4.9 eV in each collision.
This clearly demonstrates the existence of atomic excited states with discrete
energy values. Indeed, in the emission spectrum of mercury, an intense
ultraviolet spectral line with wavelength 254 nm, corresponding to energy
4.9 eV, is observed. The Franck-Hertz experiment showed that an electron
must have a minimum amount of energy to make an inelastic collision with
an atom, which we now interpret as the energy required to transition to an
excited state from the ground state.

3.6 Deficiencies of the Bohr model

In spite of the successes of the Bohr model to predict the spectra of hydrogen,
and hydrogen-like ions, there are several results that it cannot explain. It
cannot be applied to atoms with two or more electrons since it does not take
into account the Coulomb interaction between electrons. A closer look at the
atomic spectral lines emitted from various gases shows that some spectral
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“lines” are in fact not single lines, but a pair of closely spaced spectral lines
(known as doublets). These closely spaced lines are known as fine structure.
Furthermore, the model does not allow us to calculate the relative intensities
of the spectral lines.

More serious deficiencies in the Bohr model is that it predicts the incor-
rect value of angular momentum for the electron! For the ground state of
hydrogen (n = 1), the Bohr theory gives L = ~, while experiment clearly
shows L = 0.

Furthermore, as we will see in the next chapter, the Bohr model vi-
olates the Heisenberg uncertainty relation. In Bohr’s defense, his theory
was developed more than a decade before the advent of wave mechanics
and the introduction of the uncertainty principle. The uncertainty relation
∆x∆px & ~ is valid for any direction in space. Choosing the radial direc-
tion in the atom, this becomes ∆r∆pr & ~. For an electron moving in a
circular orbit, we know its radius exactly and thus ∆r = 0. However, since
it is moving in a circular orbit, it cannot have any radial velocity, and thus
pr = 0 and ∆pr = 0. This simultaneous exact knowledge of both r and pr
violates the uncertainty principle.

These problems associated with the Bohr model can be summarized as
follows.

Deficiencies of the Bohr model

• Cannot be applied to multi-electron atoms.

• Does not predict fine structure of atomic spectral lines.

• Does not provide a method to calculate relative intensities of spectral
lines.

• Predicts the wrong value of angular momentum for the electron in the
atom.

• Violates the Heisenberg uncertainty principle (although Bohr’s model
preceded this by more than a decade)

As with classical physics, we do not wish to discard the Bohr model of the
atom, but rather make use of it in its realm of applicability, and in guiding
our intuition to develop further models of atomic structure. The Bohr model
gives us a helpful picture of atomic structure that can describe properties
of atoms. For example, many properties associated with magnetism can
be understood through Bohr orbits. Furthermore, as you will find next
year when you study the hydrogen atom using the Shrödinger equation, the
energy levels are exactly the same as those given by the Bohr model.
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Chapter 4

Wavelike properties of
particles

The framework of mechanics used to describe quantum systems is often
called “wave mechanics” owing to the wave-like behavior that can be ob-
served for what would classically be described by a particle trajectory. In
this chapter we discuss experimental evidence of wave-like phenomena asso-
ciated with particles such as electrons. In this discussion you will notice the
terms probability of a measurement outcome, the average of many repeated
measurements, and the statistical behavior of a system. These terms are an
integral part of quantum physics. The classical notions of a fixed particle
trajectory and certainty of measurement outcomes do not hold for quantum
systems and the quantum ideas of probability and statistically distributed
measurement outcomes take rein.

4.1 de Broglie waves

We begin by introducing the concept of “matter waves”. Previously, when
discussing the photoelectric effect and Compton scattering, we saw that
these experiments could be explained by using a particle-like description of
light. However, the double-slit experiment, in which two identical slits are
illuminated and an interference pattern is recorded on a screen far from the
slit, requires a wave description. Upon closer inspection the double-slit ex-
periment does show some particle-like properties of light as well though. At
low light levels, only individual photons are registered at point-like positions
on the observation screen (as depicted in Fig. 4.2. The interference pattern
is not initially present on the screen, and only appears after a finite time
period required to collect sufficient number of photons. The wave proper-
ties of light are shown in the collective interference pattern observed after
many photons have been detected. However, the particle properties of light
are illustrated on a shot-by-shot basis - each photon appears as a point-like
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Figure 4.1: Louis de Broglie

detection event on the screen. We see that wave and particle properties are
present in such an experiment. This idea that a quantum system possesses
both wave and particle properties, is known as wave-particle duality.

Figure 4.2: The build up of a double-slit interference pattern showing indi-
vidual particle detection. The number of detected electrons is (a) 11, (b)
200, (c) 6000, (d) 40000, and (e) 140000.

In 1924 Louis de Broglie (pronounced “de Broy”) put forth a signifi-
cantly new concept regarding the behavior of quantum systems in his PhD
thesis. While contemplating the wave-particle duality of light, he questioned
whether this dual particle-wave nature is a property of light only, but rather
applies to all physical systems as well? He chose to suggest the latter, that
all physical systems should demonstrate this wave-particle duality. Special
relativity implies that

E2 = (cp)2 + (mc2)2, (4.1)
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which can be simplified for a photon (zero rest mass) to yield,

E = cp. (4.2)

Using the Planck relationship between energy and frequency, E = hν, or in
terms of the wavelength, E = hc/λ, we arrive at the following relationship
between wavelength and momentum for a photon

λdB =
h

p
, (4.3)

De Broglie went further and suggested that this relationship holds for ma-
terial systems as well as light. That is, a material system with momentum
p has associated with it a wave of wavelength λdB given by Eq. (4.3) above.

De Broglie waves and the Bohr model

If we examine the resulting effects de Broglie’s hypothesis has on the Bohr
model of hydrogen, we first recall that the allowed radii for the Bohr model
are given by

rn = a0n
2, (4.4)

where a0 ≈ 0.5Å is the Bohr radius and n is a positive integer. The momen-
tum of the photon in state n is given by

pn =
~
a0n

, (4.5)

or pn = n~/rn, where ~ = h/2π. Through the de Broglie relation between
wavelength and momentum, λ = h/p = h/(n~/rn) = 2πrn/n, we see that
the circumference of an orbit is equal to an integer number of de Broglie
wavelengths

2πrn = nλ, (4.6)

as depicted in Fig. 4.3 below.

De Broglie waves in everyday life?

The de Broglie wavelength for everyday objects is extremely small. For
example a cricket ball (m = 0.16 kg and velocity v = 161 km/hr ≈ 45 m/s)
has a de Broglie wavelength

λcricket =
h

mv
=

6.626× eV

(0.16 kg)(45 m/s)
≈ 9× 10−35 m, (4.7)
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Figure 4.3: Illustration of the relationship between the de Broglie wavelength
of electrons in the Bohr model of the hydrogen atom. Only an integer
number of de Broglie waves around the circumference of a given Bohr orbit
is allowed.

or Usain Bolt (m = 92 kg and velocity v = 45 km/hr ≈ 12 m/s) has a de
Broglie wavelength

λBolt =
h

mv
=

6.626× 10−34 J s

(92 kg)(12 m/s)
≈ 6× 10−37 m. (4.8)

Suppose we tried to observe the wave-nature of these objects by using a
double slit type experiment. The spacing between adjacent fringes in a
double-slit experiment is given by ∆x = λL/d, where λ is the wavelength of
the incident wave on the slit, d is the spacing between the slits, and L is the
distance from the slit to the observation screen. To obtain a reasonable value
of fringe separation, say 10−6 m requires the ratio of screen distance to slit
spacing to be on the order of 1028, which is not feasible. These wavelengths
are extremely small compared to anything that can be observed in a modern
laboratory. However, if we examine the de Broglie wavelengths associated
with electrons or atoms moving at modest (non-relativistic) speeds we find
that these are on the same length scale as the spacing of atoms in a crystal
lattice. For example, electrons that have been accelerated with a potential
difference of 50 V have kinetic energy K ≈ 50 eV and thus non-relativistic
momentum p =

√
2mK, where m is the rest mass of the electron. The

associated de Broglie wavelength for such electrons is thus

λdB =
hc

pc
=

hc√
2mc2K

=
1240 eV nm√

2(0.511× 106 eV)(50 eV)
= 0.17 nm. (4.9)

Here I have made use of the numerical values of the product of the Planck
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constant and vacuum speed of light hc ≈ 1240 eV nm, and the rest energy
of the electron mc2 ≈ 0.511 MeV, two values I suggested incorporating into
your long-term memory. You will find these extremely helpful in performing
numerical calculations.

As you can see, it is not feasible to observe the wave properties of macro-
scopic systems owing to the extremely small de Broglie wavelengths for such
objects. However, there is some hope for observing such wave behavior for
atomic scale systems as demonstrated by the wavelength for the electrons
calculated above.

4.1.1 Davisson-Germer Experiment

(a) Experimental setup: An electron beam
incident on a crystalline nickel target is scat-
tered and the scattered electrons are detected
by a movable detector at an angle θ with re-
spect to the incident beam.

(b) Diffraction scattering geometry in which
electrons scatter off the first layer of atoms in
the crystal with lattice spacing d at an angle
θ.

Figure 4.4: Davisson-Germer experiment.

The first experimental confirmation of the wave-nature of matter and
quantitative confirmation of the de Broglie relation, Eq. (4.3), was per-
formed with a beam of electrons. In 1926, at Bell Labs, Clinton Davisson
and Lester Germer were investigating the reflection of electron beams from
the surface of nickel crystals. A schematic view of their experiment is shown
in Fig. 4.4a. A beam of electrons accelerated through a potential difference
V is incident on a crystalline nickel target. Electrons are scattered in many
directions by the atoms of the crystal and detected at an angle θ from the
incident beam. If we assume that each atom in the crystal can act as a
scatterer, then the scattered electron waves can interfere, and we then have
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a crystal diffraction grating for the electrons, as depicted in Fig. 4.4b. Be-
cause the electrons had low kinetic energy, they did not penetrate very far
into the crystal, making it sufficient to consider only diffraction due to the
plane of atoms at the surface. The situation is precisely analogous to the
use of a reflection grating for light. The spacing d between atoms on the
surface is analogous to the spacing between slits in an optical grating. The
diffraction maxima occur when the path length difference between adjacent
scatterers (atoms in this case) (d sin θ) is an integer number of wavelengths
(nλ),

d sin θ = nλ. (4.10)

The lattice spacing for nickel is known to be d = 0.215 nm. For an accel-
erating voltage V = 54 eV (λ = 0.167 nm), Davisson and Germer observed
a peak in the scattered electrons at an angle θ = 50◦ as shown in Fig.
4.5, which corresponds to first-order diffraction from a lattice with spacing
d = λ/ sin θ ≈ 0.218, which is very close to the accepted value for nickel.

Figure 4.5: Scattering intensity as a function of scattering angle for an
electron beam accelerated through 54 V potential incident on crystalline
nickel as in the Davisson-Germer experiment.

If there is some uncertainty in the kinetic energy of the particle beam,
∆K, this is translated into uncertainty in the wavelength of the incident
de Broglie wavelength ∆λ, owing to the relationship between the two, λ =
hc/
√

2mc2K. The uncertainty in wavelength can be found by considering
the ratio of “infinitessimal” changes in wavelength to kinetic energy and
equating this with the first derivative of wavelength with respect to kinetic
energy
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∆λ

∆K
≈
∣∣∣∣ dλ

dK

∣∣∣∣ , (4.11)

and solving for ∆λ to give

∆λ ≈
∣∣∣∣ dλ

dK

∣∣∣∣∆K =
1

2
λ

∆K

K
. (4.12)

The fractional uncertainty of the wavelength is thus half the fractional un-
certainty of the kinetic energy, i.e.

∆λ

λ
≈ 1

2

∆K

K
. (4.13)

Note that for a photon with the same fraction uncertainty in the total energy
as the fractional uncertainty in a particle kinetic energy, ∆E/E = ∆K/K,
leads to wavelength fractional uncertainty ∆λ/ = ∆E/E, without the factor
of 1/2. This is because the momentum of the photon is directly proportional
to the total photon energy, whereas the momentum of the particle (in the
non-relativistic regime) is proportional to the square root of the kinetic
energy.

The uncertainty in de Broglie wavelength will lead to an uncertainty
in constructive interference scattering angle (θ ≈ nλ/d in the small angle
approximation), and thus a blurring out of the diffraction spot. The uncer-
tainty in the diffraction angle ∆θ can be approximated by

∆θ

θ
≈ ∆λ

λ
. (4.14)

Thus we see that the diffraction angle uncertainty will be half as small for
a beam of non-relativistic particles in comparison with similar photons.

4.2 Double-slit interference and complementarity

The definitive evidence for the wave nature of light is typically attributed to
the double-slit experiment performed by Thomas Young in 1801. In princi-
ple, it should be possible to perform double-slit experiments with material
systems, such as electrons, neutrons, atoms, and even molecules! However,
technological difficulties for producing double slits for particles are extremely
challenging and only in recent years have these been addressed. The first
double-slit experiment with electrons was performed in 1961. Since then,
numerous experiments have been performed on a wide variety of systems,
including bucky balls and more recently, large organic molecules (see articles
by Arndt et al, and Zhao and Schöllkopf linked on website).

Considering double-slit interference of particles, we not that the detec-
tion of a particle at a point x on the screen is governed by the interference of
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pathways that the particle can take. This is in line with Feynman’s multi-
ple path formulation of quantum mechanics for those interested. If we take
our double slit setup to be similar to that shown in Fig. 4.6, there are two
possible paths the particle can take (r1 or r2) to reach point x on the screen,
corresponding to the particle passing through slit 1 or 2 respectively. The
phases associated with each path is given by the wavenumber k = 2π/λ mul-
tiplied by the pathlength r1 =

√
L2 + (x+ d/2)2 or r2 =

√
L2 + (x− d/2)2.

Figure 4.6: Double-slit interference setup. Two slits of negligible width
separated by a distance d. The number of particles per unit time (particle
flux) at a point x on a collection screen a distance L away from the slits
can be calculated by considering the amplitudes for the two possible paths
paths a particle can take r1 and r2.

The particle flux (number of particles per unit time) at a point x on the
screen is proportional to the modulus squared of the total amplitude for all
possible paths the particle can take to reach x, which for our double slit,
there are two A1 and A2. If we assume these paths have equal amplitudes
and differ only in the phases, this gives a flux

N = |Atot|2 = |A1 +A2|2 = A2
∣∣∣eiφ1 + eiφ2

∣∣∣2 = 2A2(1 + cos ∆φ), (4.15)

where the phase difference between paths 1 and 2 is given by

∆φ = φ1 − φ2 ≈
2πxd

λL
. (4.16)

The flux of particles at position x on the screen can thus be written as

N(x) = 4A2 cos2

(
πxd

λL

)
, (4.17)

where I have used the trig identity (1 + cosx)/2 = cos2(x/2).
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Figure 4.7: Double-slit which-way experiment. Each slit is surrounded by a
wire loop connected to a meter to determine through which slit an electron
passes. No interference fringes are observed on the screen.

Now suppose that we want to try to determine through which slit the
electron passed. This could be done by introducing a wire loop around
each slit that causes a meter to deflect each time a charged particle passes
through the slit as depicted in Fig. 4.7. If we performed such an exper-
iment we would find that the interference pattern no longer appears, but
rather just a pattern of two peaks. By measuring through which slit the
particle passes, we no longer have two possible paths that the particle can
take to the screen, we have collapsed the possible paths to only one. This
destroys the superposition of amplitudes in Eq. (4.15) required to obtain
the double-slit interference pattern. This thought experiment nicely demon-
strates the principle of complementarity. When we ask through which slit
the particle passed, we are investigating the particle aspects of its behav-
ior only, and thus cannot observe any of its wave nature (the interference
pattern). Conversely, when we study the wave behavior, we cannot simulta-
neously observed the particle nature (the classical trajectory). The particle
will behave as a particle or a wave, but we cannot observe both aspects of
its behavior simultaneously.

4.3 Wave function

One major challenge to de Broglie’s waves arises when one asks, “What
is waving and what does the amplitude of the wave represent?” De Broglie
interpreted his waves as “pilot waves” or “guiding waves” that direct the par-
ticle trajectory. This interpretation was further developed by David Bohm
and gives an alternative formulation of quantum physics. However, the more
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Figure 4.8: Max Born

standard interpretation of the de Broglie waves comes from Max Born, who
published his interpretation of the wave function in 1926. The “state” of
a quantum system is completely governed by its wave function ψ(x, t) (as-
suming a particle confined to move in one dimension), which is called a
probability amplitude. The probability to find the particle between x and
x+ dx at time t is given by

P (x, t)dx = |ψ(x, t)|2dx. (4.18)

This implies that if we know the wave function for a particle to be ψ(x), to
determine the probability to find this particle between x = −a and x = +a,
we must integrate each infinitessimal probability

P (−a < x < a, t) =

∫ +a

−a
|ψ(x, t)|2dx. (4.19)

This is illustrated in Fig. 4.9, which shows a Gaussian probability distribu-
tion.

Note that this interpretation implies that the integral over all space of
this probability density should give unity (the particle has to exist some-
where in space) ∫ ∞

−∞
P (x, t)dx =

∫ ∞
−∞
|ψ(x, t)|2dx = 1. (4.20)

Thus, for a single run of the experiment we cannot determine specifically
where a particle will be detected, but we can use the wave function to predict
the probability to find the particle at a point on the detection screen. In the
next chapter we will discuss the mathematical framework for calculating the
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Figure 4.9: The modulus squared of the wave function |ψ(x)|2 is interpreted
as the probability density for the particle described by the wave function
ψ(x). The integral between two limits, chosen here to be ±a = ±0.25, gives
the probability of finding the particle in this region (at time t if there is a
time dependence of the wave function).

wave amplitudes and develop a more rigorous definition of the probability
density.

4.4 Uncertainty relations

A central aspect of the dual wave-particle nature of quantum systems is the
indeterminism associated with measurement outcomes. This wave-particle
duality is most pronounced when discussing the uncertainties associated
with the simultaneous measurement of the position and momentum of a
quantum particle. In classical physics, we think of uncertainty as a flaw
in our measurement devices. For example, if we attempt to measure the
position of a particle with respect to another particle using a ruler with mil-
limeter scale divisions, we can at best quote the position to say the nearest
half millimeter. The uncertainty in the position, which we denote by ∆x,
is limited by our measurement device. A further source of uncertainty in
measurements arises from statistical fluctuations in the measurement pro-
cess, for example, we might not quite line up the ruler origin at exactly the
same point for repeated measurements. This type of random error can be
eliminated by repeating the measurement many times and using the average
value of the measurement outcomes and their standard deviation to estimate
the true value of the position. Furthermore, if the particle is moving and
we wanted to measure the position and momentum of the particle, there is
nothing to stop us from doing both simultaneously to any level of precision.
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However, in quantum physics there are inherent uncertainties associ-
ated with the values of measurements performed on quantum systems. The
uncertainty principle (or Heisenberg uncertainty principle named after its
discoverer) tells us that the product of uncertainties associated with posi-
tion and momentum must be greater than or equal to the Planck constant
divided by 4 π, i.e.

∆x∆px ≥
~
2
, (4.21)

where ~ = h/2π as usual. We interpret this inequality by stating that
the if we try to measure both position and momentum simultaneously, the
product of their uncertainties must be larger than a very small, but finite
value. In other words, it is not possible to simultaneously determine the
position and momentum of a quantum system with unlimited precision.
This uncertainty principle in x and px can be extended to other measurement
outcomes including the two other spatial-momentum directions (y, py and
z, pz) as well as other complementary observables, that is quantities that
cannot be simultaneously determined to arbitrary precision (many, but not
all, complementary observables turn out to be Fourier-transform pairs). For
example, there is an uncertainty relation between energy and time

∆E∆t ≥ ~. (4.22)

Figure 4.10: Werner Heisenberg

These uncertainty relations give a fundamental limit to the best that
we can hope to do in determining measurement precision. We can do worse
than these uncertainty relations, but nature sets the rules that we may do no
better. This is a profound implication about our view of the natural world.
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Taken to the extreme the uncertainty principle not only holds for measure-
ment outcomes, but at a deeper level says for example that position and
momentum cannot be simultaneously well-defined for a quantum system - a
particle cannot have both a precise position in space and a precise direction
of propagation. This latter statement refers directly to our notions of reality
- does a particle really possess an exact position and momentum and we are
simply ignorant of these qualities? Or do we only attribute these qualities
of position and momentum after making a measurement on the system. It
is the latter approach that is taken in quantum mechanics, which has far-
reaching implications when one starts to think about ever larger quantum
systems. We will discuss these issues in greater detail in future lectures, but
I wanted to plant the seed for now.

The uncertainty principle arose from a different mathematical approach
to quantum physics from the de Broglie-Schrödinger wave-function approach
known as matrix mechanics. This method was developed by Werner Heisen-
berg, Max Born and Pascual Jordan at approximately the same time that
Shrödinger developed his wave-mechanics approach to quantum physics (1925-
1926). There was a brief period of confusion (1926-1927) during which two,
seemingly unrelated approaches to quantum theory existed and gave iden-
tical predictions. However, this confusion was short lived and Shrödinger
showed that indeed the two methods were mathematically equivalent. Due
to the familiarity of physicists with the mathematical tools of wave motion
compared with the mathematics of matrices, owing to the prevalence of wave
phenomena in classical physics (light, sound, water, etc...), Shrödinger’s ap-
proach was much more widely adopted. This is perhaps one reason why the
wave approach is still the way quantum physics is introduced. To circumvent
the difficulties associated with introducing the matrix mechanics formalism,
which you will learn next year, we will discuss two examples from which the
uncertainty relations arise naturally.

Uncertainty principle from a slit

Consider a beam of particles with well defined momentum traveling in
the z direction as shown in Fig. 4.11. The de Broglie wavelength is well
defined for such a system of particles owing to the well defined momentum.
The amplitude associated with such a de Broglie wave is given by

ψ(x, y, z, t) = Aei(pzz−Et)/~ (4.23)

which is the equation for a plane wave traveling in the z direction with
wavevector kz = pz/~ and angular frequency ω = E/~. Note that the
position of such a particle in the x and y directions is completely unknown
(∆x = ∆y = ∞) - the plane wave spreads infinitely in these directions.
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Figure 4.11: Single-slit diffraction as a source of uncertainty for transverse
momentum. A plane wave traveling in the z direction is incident on the
single slit of width ∆x. Initially there is no uncertainty in the momentum
components of the particle, pz = h/λ and px = 0, while the transverse posi-
tion is completely uncertain since the plane wave is spread across all space.
However, the slit localizes the particle to within its transverse width ∆x,
identified with the finite transverse position uncertainty. This will induce an
uncertainty in the transverse momentum, which we estimate by considering
the first-order diffraction minimum on either side of the peak. These occur
when ∆x sin θ = λ/2, using the edges of the slit as point sources. The inset
shows the relationship between the scattered momentum vector p and its
components, giving ∆px/2 ≈ p sin θ.

Furthermore, the uncertainty in the momentum for the particle is zero, that
is the momentum is precisely defined. Now, by introducing a slit into the
path of the quantum particle, we reduce the uncertainty in the particle
transverse position, to the width of the slit. For simplicity, we will only
discuss the x direction now, but a similar argument holds for the y direction
as well. There should be a corresponding increase in the uncertainty in the
transverse momentum to accompany this new localization of the particle.

To estimate the uncertainty in the transverse momentum, we can use
our knowledge from classical wave optics about diffraction effects that arise
from passing a wave through such a slit. We can approximate the spread
in momentum by thinking about the first order diffraction minimum, which
we can calculate by considering only the two end points of the slit as acting
like a double slit. The angle for the first minimum occurs when

∆x sin θ =
λ

2
, (4.24)

where θ is the angle from the z axis that the momentum is directed. This
implies that
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∆x =
λ

2 sin θ
. (4.25)

The uncertainty in the transverse momentum is associated with the deflec-
tion angle experienced by the particle and can be determined from geometry
as

∆px ≈ 2p sin θ. (4.26)

Note that the factor of 2 on the right hand side of Eq. (4.26) arises from
considering the full transverse momentum uncertainty in the positive and
negative directions. Multiplying Eqs. (4.25) and (4.26) together we arrive
at the uncertainty relation for transverse position and momentum due to
the wave nature of quantum systems

∆x∆px ≈
λ

2 sin θ
2p sin θ = λ

h

λ
= h, (4.27)

where we used the de Broglie relation λ = h/p.

Application of the uncertainty principle

The uncertainty principle can be used to calculate various quantities to
give an order of magnitude estimate in quick calculations. For example,
consider the energy associated with the ground state of a helium ion. First
we assume that the electron is bound to the helium ion at a radius of ap-
proximately a0/2, where a0 ≈ 0.5Å is the Bohr radius and the factor of
1/2 arises from the stronger Coulomb attraction of the nucleus due to the
additional proton in the nucleus. Then by assuming this orbital radius is
the uncertainty in the radial position,

∆r ≈ a0/2, (4.28)

the corresponding momentum uncertainty will be

∆pr ≈ 2~/a0, (4.29)

from the uncertainty relation ∆r∆pr ≈ ~. The energy associated with
this confined particle can be estimated by taking the non-relativistic kinetic
energy associated with the particle bouncing back and forth inside the ion
with momentum pr ≈ ∆pr, giving

Ebind ≈
∆p2

r

2m
≈ 2

~2

ma2
0

= 2
1

mc2

(
hc

2πa0

)2

≈ 2
1

0.5 MeV

(
1240 eV nm

2π(0.05 nm)

)2

≈ 62 eV, (4.30)
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which is surprisingly close to the value predicted by the Bohr model, E =
Z2E1 = 22 × 13.6 eV ≈ 54.4 eV.

4.5 Wave packets

A pure sine wave has a well-defined wavelength and thus frequency (energy)
and momentum, but is completely delocalized in space, spreading infinitely
throughout space. The same holds for plane waves as discussed in the pre-
vious section. A classical particle, on the other hand is completely localized
in space, has a well-defined position and therefore trajectory. An electron
bound to an atom is localized in position to within an uncertainty on the
order of the atomic diameter (given by twice the Bohr radius for example),
but its precise position within the atom is not well defined. To describe
such “quasi-localized” waves, physicists have at their disposal the concept
of wave packets. A wave packet can be considered to the be the superposition
of many waves that interfere constructively in the vicinity of the particle,
giving a large amplitude where the particle is expected to be found, and
interfere destructively far from where the particle is predicted to be found.

Figure 4.12: Two cosine waves with slightly different wavelengths (top)
add constructively in superposition near zero displacement (bottom), but
destructively further away. This leads to a beat pattern.

In one dimension, we can add two sine waves with different, but nearly
equal, wave vectors, k1 and k2, which leads to a beat pattern with a spatial
localization for part of the wave depicted in Fig. 4.12. The associated wave
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is given by

ψ2(x) = A(sin(k1x) + sin(k2x)), (4.31)

where we have assumed equal amplitudes for both wave vector components.
By adding more waves to this superposition, say N in total, with appropriate
wave vectors and relative phases, we can create an increasingly localized
wave packet as shown in Fig. 4.13.

Figure 4.13: Wave packet constructed from ten different cosines, each with
slightly different wavelengths.

The corresponding wave can be written as

ψN (x) = A

N∑
m=1

sin(kmx), (4.32)

where again we assumed equal phases and amplitudes for each component.
In general, we can have different amplitudes and phases for each wave vector
component and the sum can be infinite, giving an amplitude

ψ(x) =

∞∑
m=1

Am exp [i(kmx+ φm)] , (4.33)

where we have used complex notation for our waves. This is nothing other
than a Fourier series. It is a well-known mathematical result that any
periodic function can be decomposed into a sum of sine and cosine func-
tions (or equivalently complex exponentials thanks to the Cauchy relation
eiθ = cos θ + i sin θ) with appropriately chosen amplitudes and phases.

We are not restricted to a discrete sum of possible wave vectors and
we can choose a continuous distribution of wave vectors to include in our
wave packet. In this situation, the sum in Eq. (4.33) can be replaced by an
integral

ψ(x) =

∫ ∞
−∞

A(k)eikxdk. (4.34)
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Here, the amplitude A(k) is taken to be complex to include both the ampli-
tude and phase differences between different wave vector components that
make up the wave packet. Let us start with a Gaussian distribution of wave
vectors

AGauss(k) = A0 exp

(
− k2

2∆k2

)
, (4.35)

where A0 is a normalization constant, and ∆k/
√

2 is the full 1/e1/2 width
of the probability distribution, (which we will see corresponds to the uncer-
tainty in the momentum). This probability amplitude A(k), and its corre-
sponding probability distribution p(k) = |A(k)|2 are shown in Fig. 4.14.
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Figure 4.14: Gaussian wave vector (k) probability amplitude A(k) (left) and
corresponding probability distribution p(k) = |A(k)|2 (right). Note that by
squaring the amplitude to get the probability distribution the width becomes
smaller by a factor of 1/

√
2.

Note that the uncertainty in the momentum of a particle with such a wave
vector distribution is given by ~ times the width of the wave vector prob-
ability distribution (not the probability amplitude), that is the width of
P (k) = |A(k)|2, which is just ∆k/

√
2 for a Gaussian distribution of the

form in Eq. (4.35). The factor of 1/
√

2 comes from the fact that the width
is associated with the full 1/e1/2 width of the probability distribution (not
the amplitude). In other words, the momentum uncertainty for a particle
described by the wave vector distribution in Eq. (4.35) is

∆p =
~∆k√

2
. (4.36)

The corresponding wave packet in the spatial domain, ψ(x), is

ψGauss(x) =

∫ ∞
−∞

A0 exp

(
− k2

2∆k2

)
eikxdk

= A0

√
2π∆k exp

(
−x

2∆k2

2

)
. (4.37)
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The wave packet amplitude and probability distribution corresponding to
the momentum distribution in Fig 4.14 is shown in Fig. 4.15 below.
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Figure 4.15: Gaussian wave packet probability amplitude ψ(x) (left) and
corresponding probability distribution P (x) = |ψ(x)|2 (right). The width
of the probability distribution, corresponding to the extent the particle is
localized, is inversely proportional to the width of the momentum probability
distribution, that is, ∆x ≈ ~/∆p. So a broader momentum distribution
implies a narrower position distribution and thus a more localized (classical-
like) wave packet.

The integral in Eq. (4.37) can be found from the following definite integral∫ ∞
−∞

exp
(
−ax2 + bx

)
=

√
π

a
exp

(
b2

4a

)
. (4.38)

Similar, to the wave vector case, the uncertainty in the position for a particle
with the corresponding Gaussian wave packet of Eq. (4.37) can be read off

∆x =
1√
2∆k

. (4.39)

Multiplying out the uncertainties in position and momentum we see that a
Gaussian wave packet is a minimal uncertainty state, that is, the uncertainty
in the momentum and position saturate the Heisenberg limit

∆x∆p =
~
2
. (4.40)
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