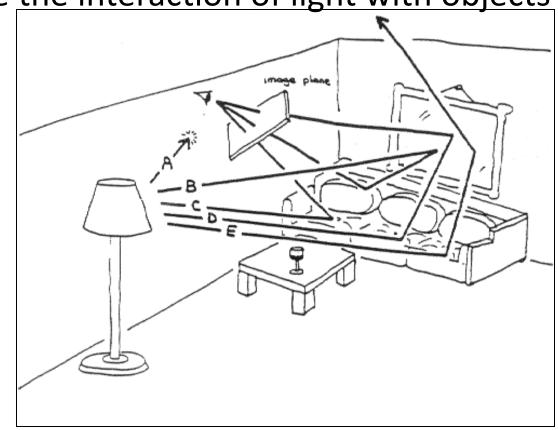
Models By Examples

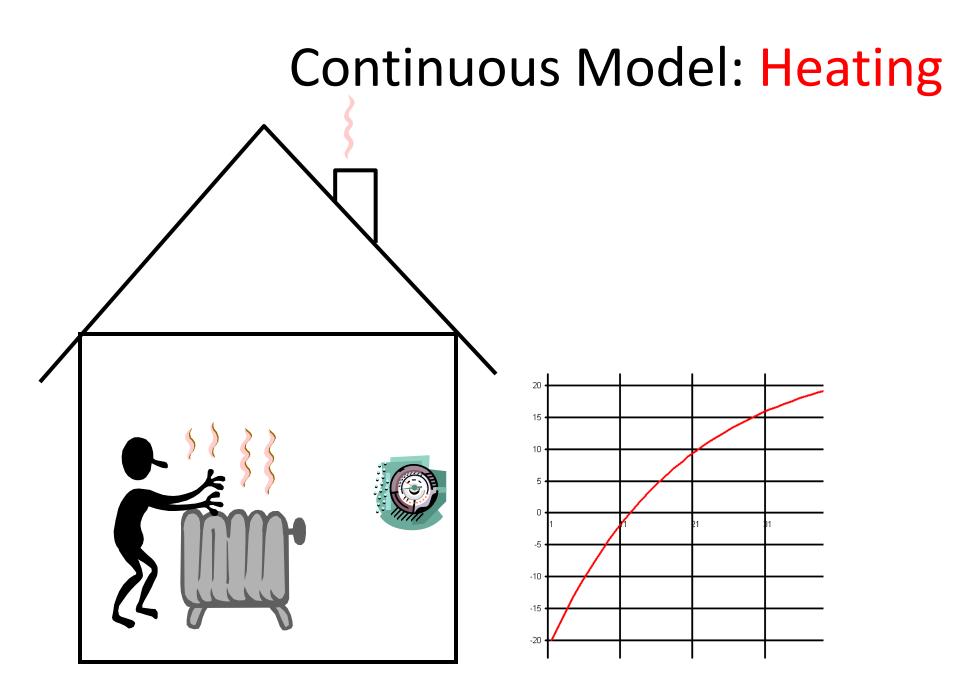
Simulating Light

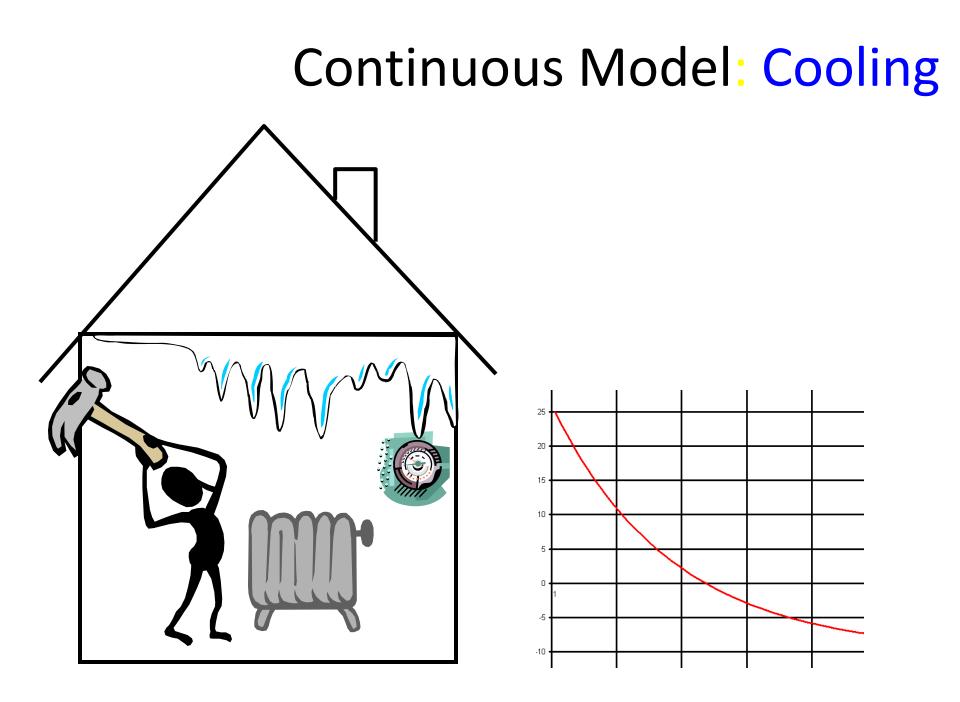
Illumination model

Used to simulate the interaction of light with objects

Objects are Shaded Rendered

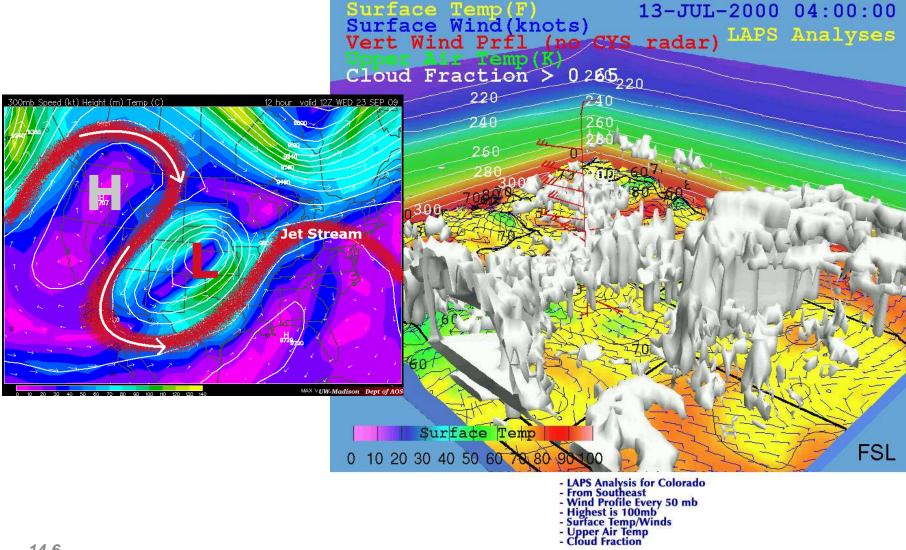






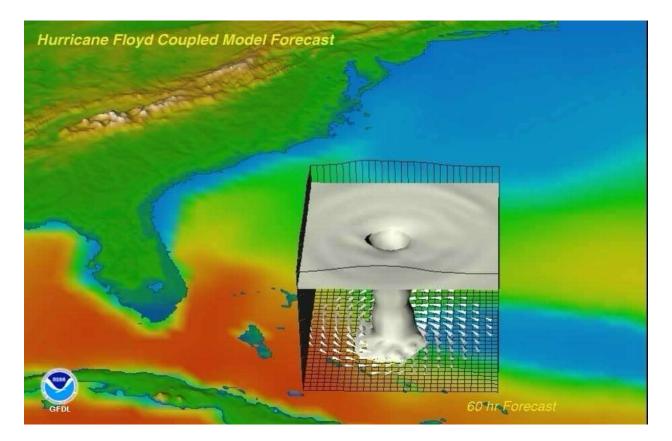
Meteorological Models

Weather – A Continuous Model



Hurricanes – A Continuous Model

$$\frac{1}{2}\rho v^{2} + \rho g z + p = q + \rho g h = p_{0} + \rho g z = \text{constant}$$



Meteorological Models

Horizontal momentum:

$$\frac{\partial p * u}{\partial t} = -m^2 \left[\frac{\partial p * uu / m}{\partial x} + \frac{\partial p * vu / m}{\partial y} \right] - \frac{\partial p * u\sigma}{\partial \sigma} + uDIV$$
$$-\frac{mp^*}{\rho} \left[\frac{\partial p'}{\partial x} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial x} \frac{\partial p'}{\partial \sigma} \right] - p^* fv + D_u$$
$$\frac{\partial p * v}{\partial t} = -m^2 \left[\frac{\partial p * uv / m}{\partial x} + \frac{\partial p * vv / m}{\partial y} \right] - \frac{\partial p * v\sigma}{\partial \sigma} + vDIV$$
$$-\frac{mp^*}{\rho} \left[\frac{\partial p'}{\partial y} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial y} \frac{\partial p'}{\partial \sigma} \right] - p^* fu + D_v$$

Vertical momentum:

$$\frac{\partial p^* w}{\partial t} = -m^2 \left[\frac{\partial p^* uv / m}{\partial x} + \frac{\partial p^* vw / m}{\partial y} \right] - \frac{\partial p^* w\sigma}{\partial \sigma} + wDIV$$
$$+ p^* g \frac{p_0}{\rho} \left[\frac{1}{p^*} \frac{\partial p'}{\partial \sigma} + \frac{T_v'}{T} - \frac{T_0 p'}{Tp_0} \right] - p^* g[(q_c + q_r)] + D_w$$

Pressure:

$$\frac{\partial p * p'}{\partial t} = -m^2 \left[\frac{\partial p * up' / m}{\partial x} + \frac{\partial p * vp' / m}{\partial y} \right] - \frac{\partial p * p' \sigma}{\partial \sigma} + p' DIV$$
$$-m^2 p * \gamma p \left[\frac{\partial u / m}{\partial x} - \frac{\sigma}{mp *} \frac{\partial p *}{\partial x} \frac{\partial u}{\partial \sigma} + \frac{\partial v / m}{\partial y} - \frac{\sigma}{mp *} \frac{\partial p *}{\partial y} \frac{\partial v}{\partial \sigma} \right]$$
$$+ p \mathbf{0} g \gamma p \frac{\partial w}{\partial \sigma} + p * p \mathbf{0}_{gw}$$

Temperature:

ē

$$\frac{\partial p * T}{\partial t} = -m^2 \left[\frac{\partial p * uT / m}{\partial x} + \frac{\partial p * vT / m}{\partial y} \right] - \frac{\partial p * T\sigma}{\partial \sigma} + T DIV + \frac{1}{\rho c_p} \left[p * \frac{Dp'}{Dt} - p_0 gp * w - D_{p'} \right] + p * \frac{Q}{c_p} + D_T ,$$

where

 $DIV = m^{2} \left[\frac{\partial p * u / m}{\partial x} + \frac{\partial p * v / m}{\partial y} \right] + \frac{\partial p * \sigma}{\partial \sigma},$ $\sigma = -\frac{p_{0g}}{p^{*}} w - \frac{m\sigma}{p^{*}} \frac{\partial p *}{\partial x} u - \frac{m\sigma}{p^{*}} \frac{\partial p *}{\partial y} v.$

and

How much math does it take to be a meteorologist?

The application of computer science to problems in biology

(or is it the other way around?? ^(C))

Encompasses:

- bioinformatics
- computational biomodeling
- molecular modeling
- protein structure prediction

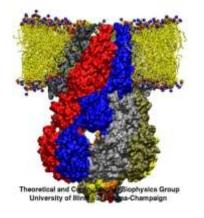
Bioinformatics

- Discovering and Processing DNA sequences
- Human Genome Project and Others

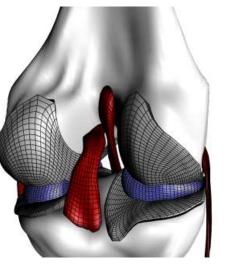
Pile gel11611.gl Machine Cookine 1414-017 Marin	Lamp 81 Press: 01373006097900v13.vmm Consears: 173420	Busing 19.08 Bigwil: C. 1788 A 1854 G 1939 T 1919 Basin: 165	Set same Set dari date: 3 Jan 2004 Se dattmic 4/123
WWACICS THIS	81884115 C111CC18.40 AAB19.411	40 00 00 00 00 00 00 00 00 00 00 00 00 0	120 8 08 CAALAA 8 818 TATAAR
AGAA	Dogramdy dim	1- Ang Wally	and marine
the state of the state	A to And Astroney	ARAM + MARANELENDA - 1	AND ALL LAD ADD
NOT TOTAL DATOTOC	at the ter to be the set of the set	WINNER TATS TT HARAS SALE IN	
mmmyhm	With Windson March Mar	Mananaman	Manna Manna
MANNAMAN W	www.www.hub	Marina	Manapanta
Non mar Burger	Mala M. MaraManana and M.	AND MANANA AND AND AND AND AND AND AND AND AN	la marka half and half have
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 40 40 10 40 40 40 40 40 40 40 40 40 40 40 40 40	ACARE AT AT A A ATA HE OT TABTE CA	TATGTONANCT TATGTOACAC
mandulina	warmhown man	Stern Allow WWWWWW	when when when
manim	Watter amadhair an	mandantan	A-MANAMANA
Amondo	mil man Long - of	mbrantaday	antonin malin

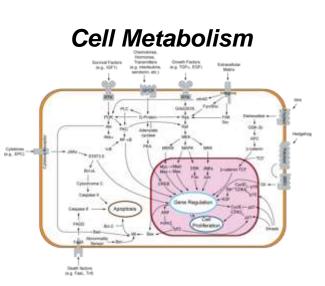
Computational Biomodeling

• The simulation of biological systems

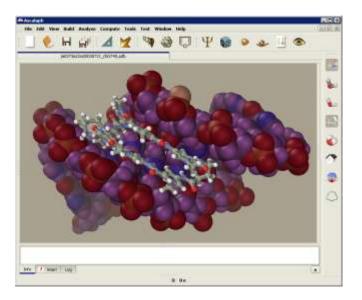


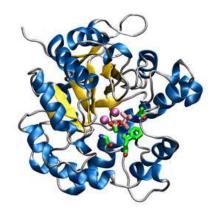
Cell Wall Protein



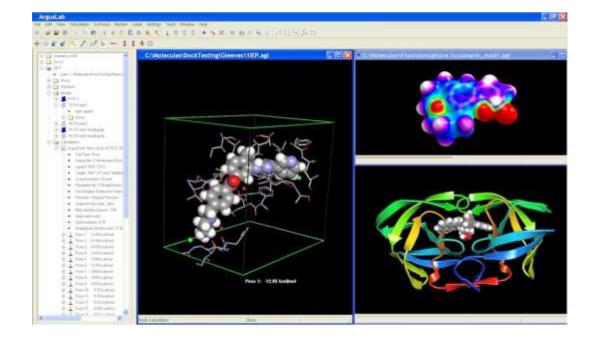


- Protein Structure Modeling
- Simulating 3-Dimensional Structure and Function of Protein Molecules





- Molecular Modeling
- Simulating Structure and Function of Chemical Molecules (usually drug discovery)



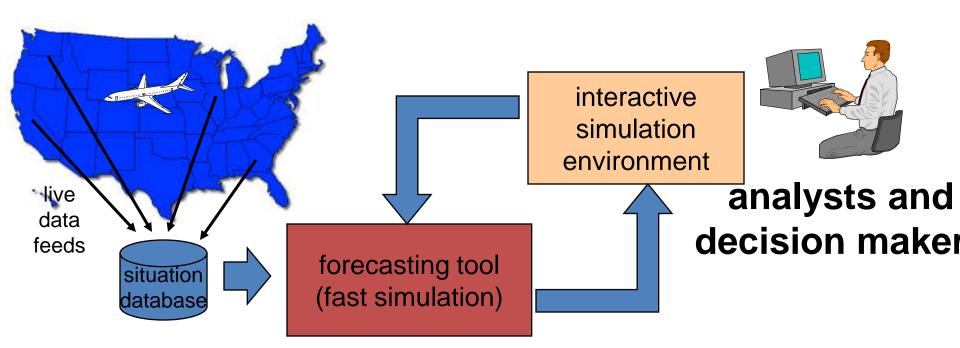
Applications: System Analysis

"Classical" application of simulation

- Telecommunication networks
- Transportation systems
- Electronic systems (e.g., microelectronics, computer systems)
- Battlefield simulations (blue army vs. red army)
- Ecological systems
- Manufacturing systems
- Logistics

Focus typically on planning, system design

Applications: On-Line Decision Aids



Simulation tool is used for fast analysis of alternate courses of action in time critical situations

- Initialize simulation from situation database
- Faster-than-real-time execution to evaluate effect of decisions

Applications: air traffic control, battle management

Simulation results may be needed in only seconds

Discrete-Time Models

Lecture 1

When To Use Discrete-Time Models

Discrete models or *difference equations* are used to describe biological phenomena or events for which it is natural to regard time at fixed (discrete) intervals. Examples:

- The size of an insect population in year *i*;
- The proportion of individuals in a population carrying a particular gene in the *i*-th generation;
- The number of cells in a bacterial culture on day *i*;
- The concentration of a toxic gas in the lung after the *i*-th breath;
- The concentration of drug in the blood after the *i*-th dose.

What does a model for such situations look like?

- Let x_n be the quantity of interest after *n* time steps.
- The model will be a rule, or set of rules, describing how x_n changes as time progresses.
- In particular, the model describes how x_{n+1} depends on x_n (and perhaps x_{n-1}, x_{n-2}, ...).

• In general:
$$x_{n+1} = f(x_n, x_{n-1}, x_{n-2}, ...)$$

• For now, we will restrict our attention to:

$$x_{n+1} = f(x_n)$$

Terminology

The relation $x_{n+1} = f(x_n)$ is a difference equation; also called a recursion relation or a map.

Given a difference equation and an initial condition, we can calculate the iterates $x_1, x_2 \dots$, as follows:

$$X_1 = f(X_0)$$

 $X_2 = f(X_1)$
 $X_3 = f(X_2)$

The sequence $\{x_0, x_1, x_2, ...\}$ is called an orbit.

Question

 Given the difference equation x_{n+1} = f(x_n) can we make predictions about the characteristics of its orbits?

Modeling Paradigm

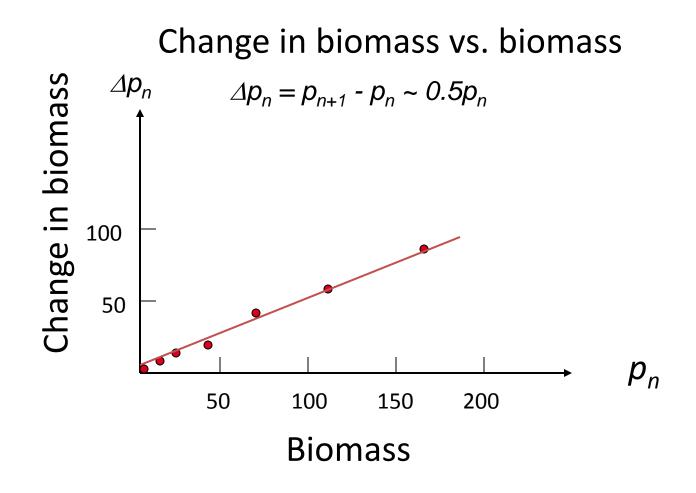
- Future Value = Present Value + Change x_{n+1} = x_n + Δx_n
- Goal of the modeling process is to find a reasonable approximation for ∆ x_n that reproduces a given set of data or an observed phenomena.

Example: Growth of a Yeast Culture

The following data was collected from an experiment measuring the growth of a yeast cultur

Time (hours)	Yeast biomass	Change in biomass
 n	p _n	$\Delta p_n = p_{n+1} - \Delta p_n$
0	9.6	8.7
1	18.3	10.7
2	29.0	18.2
3	47.2	23.9
4	71.1	48.0
5	119.1	55.5
6	174.6	82.7
7	257.3	
	•	

Change in Population is Proportional to the Population



Explosive Growth

• From the graph, we can estimate that $\Delta p_n = p_{n+1} - p_n \sim 0.5p_n$ and we obtain the model $p_{n+1} = p_n + 0.5p_n = 1.5p_n$

The solution is:

$$p_{n+1} = 1.5(1.5p_{n-1}) = 1.5[1.5(1.5p_{n-2})] = \dots = (1.5)^{n+1} p_0$$

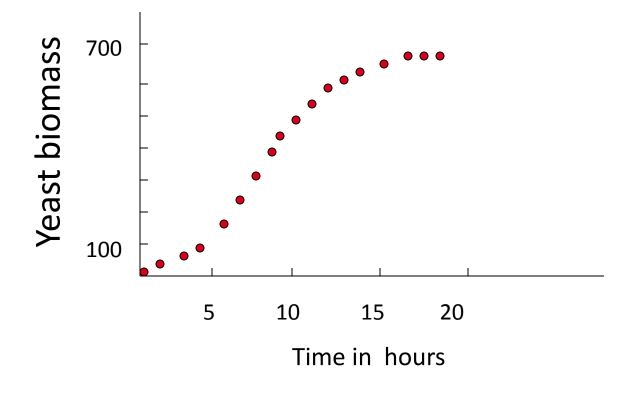
 $\implies p_n = (1.5)^n p_0.$

This model predicts a population that increases forever. Clearly we should re-examine our data so that we can come up with a better model.

Example: Growth of a Yeast Culture Revisited

Time (hours)	Yeast biomass	Change in biomass
n	p_n	$\Delta p_n = p_{n+1} - \Delta p_n$
0	9.6	8.7
1	18.3	10.7
2	29.0	18.2
3	47.2	23.9
4	71.1	48.0
5	119.1	55.5
6	174.6	82.7
7	257.3	93.4
8	350.7	90.3
9	441.0	72.3
10	513.3	46.4
11	559.7	35.1
12	594.8	34.6
13	629.4	11.5
14	640.8	10.3
15	651.1	4.8
16	655.9	3.7
17	659.6	2.2
18	661.8	

Yeast Biomass Approaches a Limiting Population Level



The limiting yeast biomass is approximately 665.

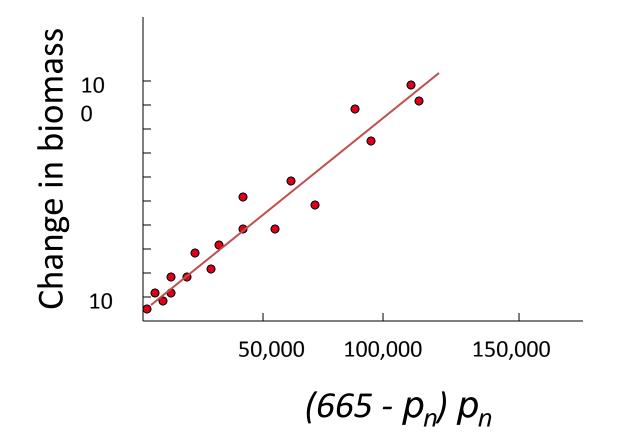
Refining Our Model

- Our original model: $\Delta p_n = 0.5p_n$ $p_{n+1} = 1.5p_n$
- Observation from data set: The change in biomass becomes smaller as the resources become more constrained, in particular, as p_n approaches 665.
- Our new model: $\Delta p_n = k(665 p_n) p_n$ $p_{n+1} = p_n + k(665 - p_n) p_n$

Testing the Model

- We have hypothesized $\Delta p_n = k(665 p_n) p_n$ ie, the change in biomass is proportional to the product $(665 p_n) p_n$ with constant of proportionality *k*.
- Let's plot $\Delta p_n vs.$ (665- p_n) p_n to see if there is reasonable proportionality.
- If there is, we can use this plot to estimate *k*.

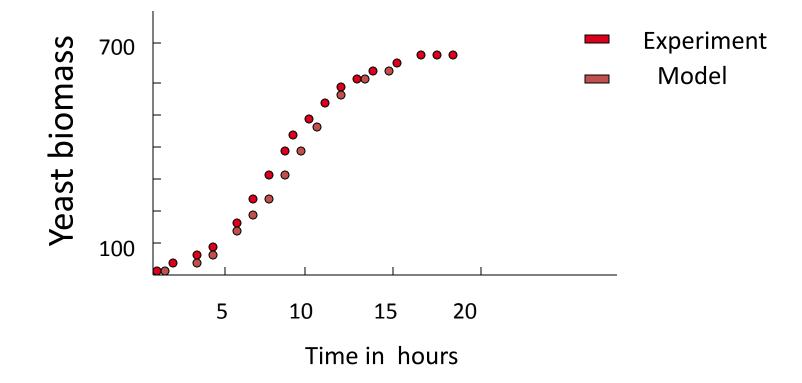
Testing the Model Continued



Our hypothesis seems reasonable, and the constant of Proportionality is $k \sim 0.00082$.

Comparing the Model to the Data

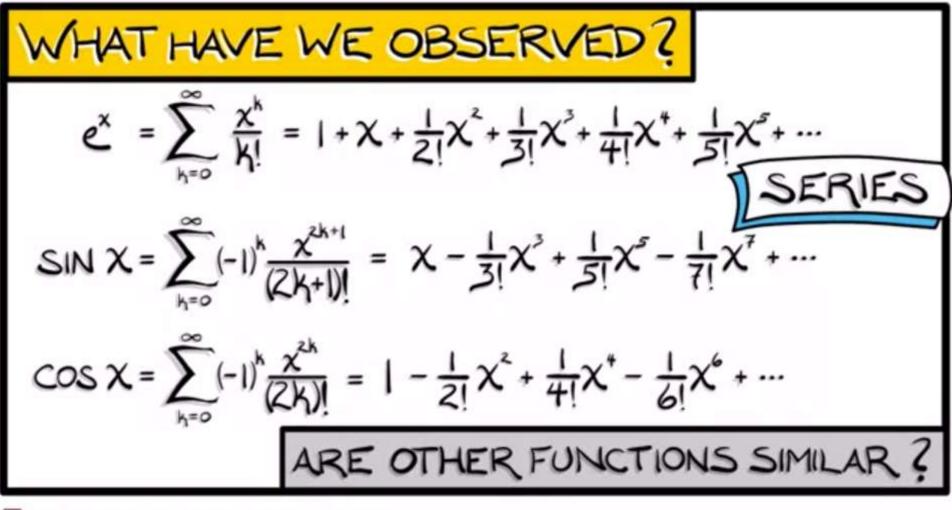
Our new model: $p_{n+1} = p_n + 0.00082(665 - p_n) p_n$



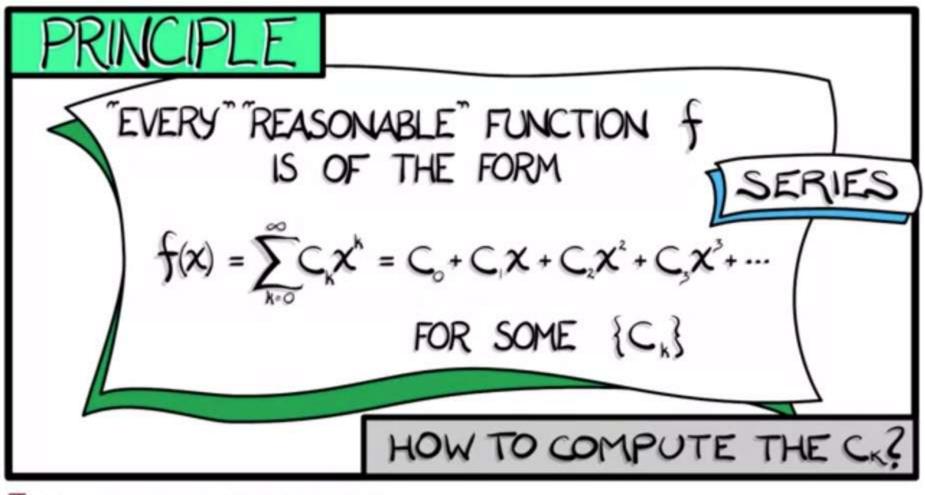
The Discrete Logistic Model

$$x_{n+1} = x_n + k(N - x_n) x_n$$

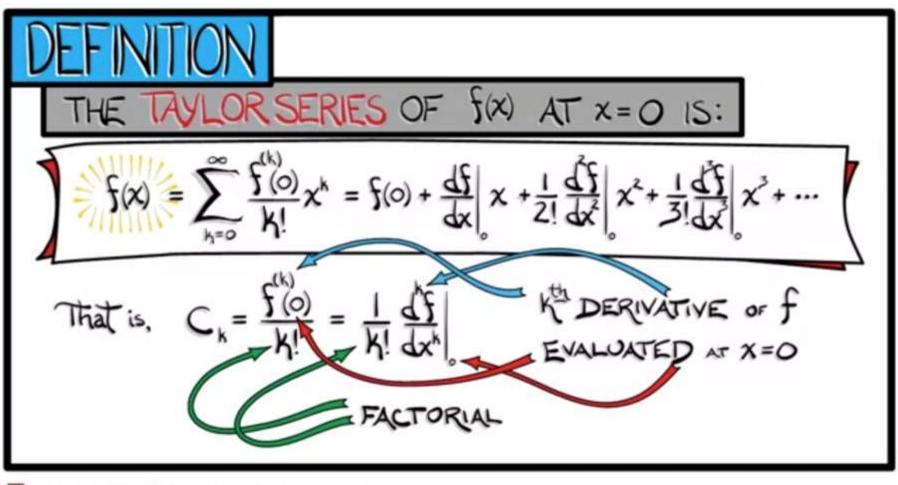
- Interpretations
 - Growth of an insect population in an environment with limited resources
 - x_n = number of individuals after *n* time steps (e.g. years)
 - *N* = max number that the environment can sustain
 - Spread of infectious disease, like the flu, in a closed population
 - *x_n* = number of infectious individuals after *n* time steps (e.g. days)
 - *N* = population size



Calculus, Single Variable, © 2012-13 Robert Ghrist



Calculus: Single Variable, © 2012-13 Robert Ghrist



🐯 Calculus: Single Variable, © 2012-13 Robert Ghrist

 $\sum_{i} \overline{f_{(i)}}$ 2(0) + ar ra =o ki J. dx. く+ 之う